Сегодня: 19 | 04 | 2024

Электрические аппараты конспект лекций ( лекции 1 - 10)

ЛЕКЦИЯ № 9

Электромагнитные реле – это электромеханические реле, функционирование которых основано на воздействии магнитного поля неподвижной обмотки с током на подвижный ферромагнитный элемент, называемый якорем. Электромагнитные реле подразделяются на собственно электромагнитные (нейтральные), реагирующие только на значение тока в обмотке, и поляризованные, функционирование которых определяется как значением тока, так и его полярностью.

ЭЛЕКТРОМАГНИТНЫЕ РЕЛЕ ДЛЯ ПРОМЫШЛЕННЫХ АВТОМАТИЧЕСКИХ УСТРОЙСТВ

Эти реле занимают промежуточное положение между сильноточными коммутационными аппаратами (контакторы, магнитные пускатели и т. д.) и слаботочной аппаратурой. Наиболее массовым видом этих реле являются реле управления электроприводом (реле управления), а среди них – промежуточные реле. Для реле управления характерны повторно-кратковременный и прерывисто-продолжительный режимы работы с числом коммутаций до 3600 в 1час при высокой механической и коммутационной износостойкости (последняя – до циклов коммутации).

Примером промежуточных реле является реле РПЛ. Эти реле применяются для коммутации цепей постоянного тока с напряжением до 440 В и переменного тока с напряжением до 660 В. Допустимый ток в промышленном режиме – 10 А. Выпускают реле двух модификаций: РПЛ-1 – с питанием входной цепи на переменном токе и РПЛ-2 – с питанием на постоянном токе. Конструктивно они отличаются друг от друга только магнитной системой. На рисунке 5.5 показано схематичное изображение реле РПЛ-1.

При подаче напряжения на обмотку 5 в магнитопроводе возникает магнитный поток, создающий электромагнитную силу, которая преодолевая противодействие возвратной пружины 3, перемещает якорь 4 от упоров 9 таким образом, чтобы уменьшить рабочие зазоры И магнитной системы. С якорем через тягу 6 и контактную пружину 1, расположенную на направляющей 10, связан контактный мостик 8 с двумя контакт-деталями 2. При некотором положении якоря последние соприкасаются с неподвижными контакт-деталями 2`2``. При дальнейшем движении якоря, вплоть до его конечного положения, происходит увеличение контактного напряжения из-за сжатия контактной пружины 1. Одновременно контактный мостик 8 перемещается вверх на расстояние , т. к. направляющая 10 не перпендикулярна мостику. В результате проскальзывания контакт-деталей происходит самозачистка их поверхностей во время работы реле. При конечном положении якоря его вибрация устраняется действием короткозамкнутых витков 7.

После снятия входного сигнала магнитный поток в магнитопроводе уменьшается до остаточного значения. При некотором значении потока, большем остаточного, сила, развиваемая деформированными при срабатывании пружинами 1 и 3, становится больше электромагнитной силы. Якорь возвращается в исходное положение, контакты размыкаются. Для уменьшения остаточного потока до значения, при котором исключается “залипание” якоря, в рассматриваемой конструкции зазор Принимается большим зазоров . Поэтому при Зазор >0.

Рисунок 5.5 – Электромагнитное реле РПЛ – 1

Электромагнитные реле. Эти реле преимущественно применяют в продолжительном режиме работы, поэтому предъявляемые к ним требования по механической и коммутационной износостойкости менее жесткие, чем к реле управления. Их коммутационная износостойкость составляет циклов. Электромагнитные реле защиты выпускают различных серий. Одна из них - реле тока РТ-40 (рисунок 5.6). На шихтованном магнитопроводе 6 П-образной формы размещены две обмотки 7, создающие поток Ф. Поток замыкается по легкому (для увеличения быстродействия)
Г-образному якорю 3. Под воздействием электромагнитного момента якорь стремится повернуть по часовой стрелке (рисунок 5.6, б) от упора 2 к упору 1. Механический момент создается специальной пружиной 14. При токе срабатывания действующий электромагнитный момент при всех углах поворота якоря (от начального до конечного, определяется упорами 1 и 2) больше противодействующего механического. С якорем посредством изоляционного рычага 8 жестко связаны два подвижных контакта мостика 10. В начале поворота якоря при срабатывании правый мостик разомкнет контакт-детали 9, а левый в конце поворота якоря замкнет контакт-детали 13. При токе возврата под действием механического момента якорь повернется против часовой стрелки.

Рисунок 5.6 – Электромагнитное реле тока РТ – 40.

Реле РТ-40, как реле защиты, должно иметь высокий коэффициент возврата. Этого можно достичь приближением тяговой характеристики реле к механической. Однако их чрезмерное сближение при конечном положении якоря приводит к недопустимому снижению контактного нажатия на замыкающих контактах. Согласование характеристик осуществляется изменением положения упоров 1 и 2.

Грубая регулировка тока срабатывания реле (в 2 раза) осуществляется путем различного (последовательного или параллельного) соединения обмоток 7. Плавное регулирование осуществляется перемещением указателя уставки 11 по шкале уставок 12. Указатель уставки 11, соединенный с пружиной 14, при своем движении закручивает или раскручивает пружину, что соответственно приводит к подъему или опусканию механической характеристики реле. Реле РТ-40 может работать как на постоянном, так и на переменном токе. Для устранения вибраций якоря, возникающих при работе на переменном токе, применяется гаситель колебаний 5.

ПОЛЯРИЗОВАННЫЕ ЭЛЕКТРОМАГНИТНЫЕ РЕЛЕ

Конструкции магнитных систем современных поляризованных реле построены по принципу дифференциальных или мостовых схем. Некоторые из них приведены на рисунке 5.7.

Поляризованные реле бывают как одностабильными, так и двустабильными. Они различаются также и по типу регулирования.

При двузпозиционной нейтральной регулировке контактные узлы устанавливаются симметрично относительно нейтральной линии, являющейся одной из осей симметрии магнитной системы реле. Якорь в этом случае перебрасывается от одного своего крайнего установившегося положения к другому практически при одинаковых по модулю МДС в обмотке (обмотках). Такие реле называются двухстабильными двухпозиционными.

При двухпозиционной регулировке с преобладанием оба контактных узла располагаются по одну сторону от нейтрали, но на разных от нее расстояниях. Срабатывание таких реле происходит только при одном определенном направлении тока в обмотке (обмотках). После отключения тока якорь всегда возвращается в одно и то же первоначальное устойчивое положение, коммутируя выходные цепи реле контактными узлами в обратном порядке. Такие реле функционируют как чувствительные нейтральные электромагнитные реле, поэтому и являются одностабильными.

При трехпозиционной регулировке контактные узлы расположены так же, как и при двухпозиционной нейтральной регулировке, т. е. симметрично относительно нейтрали магнитной системы. Однако при отсутствии тока в обмотке (обмотках) якорь в реле с трехпозиционной регулировкой занимает нейтральное (среднее) устойчивое положение благодаря усилию достаточно жесткой возвратной пружины, часто являющейся и подвеской.

Прохождение тока через обмотки в одном направлении заставляет якорь осуществлять коммутацию одного из контактных узлов. При изменении направления тока якорь отклоняется в другую сторону, что вызывает коммутацию другого контактного узла. Такие реле называются одностабильными трехпозиционными.

Конструкции поляризованных реле многообразны. Рассмотрим в качестве примера конструкционную схему реле РПС-47. Реле разработано на основе мостовой магнитной системы, показанной на рисунке 5.7, д – схема конструкции изображена на рисунке 5.8.

Магнитная система реле содержит два сердечника 3 (рисунок 5.8), на каждом из которых расположены две обмотки 2.

Рисунок 5.7 – Конструкции магнитных систем современных поляризованных реле.

Концы сердечников размещены в отверстиях четырех полюсов 1, к более тонким концам которых прикреплены два постоянных магнита 8. Якорь 9 размещен между тонкими концами полюсов и постоянными магнитами. Между концами якоря и тонкими концами полюсов имеются четыре рабочих зазора (см. рисунок 5.8, д). Одна пара обмоток соединена последовательно таким образом, чтобы создаваемый ими суммарный управляющий магнитный поток проходил в магнитной системе вкруговую – последовательно через сердечники и четыре рабочих воздушных зазора перпендикулярно плоскости якоря.

Рисунок 5.8 –Поляризованное электромагнитное реле тока РПС – 47.

Вторая пара обмоток соединена так же, но предназначена для создания управляющего потока противоположного направления.

Поляризующий поток, выходя из северного центрального полюса магнита, проходит в среднюю часть якоря, где расположена ось вращения 10, и разделяется на два потока, которые проходят вдоль якоря в противоположных направлениях к южным полюсам магнита, пересекая рабочие воздушные зазоры. К якорю прикреплены четыре толкателя 4 со стеклянными шариками 7.

Контактная система состоит из четырех подвижных переключающихся пружин 5 и восьми контактных пружин 6, имеют прорезь, что обеспечивает двойное параллельное контактирование.

Реле работает следующим образом. При подаче управляющего сигнала на одну пару обмоток (2 и 2`) создается управляющий поток (штриховая линия на рисунке 5.7, д), который в зазорах и складывается с поляризованным потоком (сплошные линии), а в зазорах и вычитается из него. В результате на якоре создается вращающий момент. Якорь перебрасывается из одного крайнего положения в другое и толкатели 7 (см. рисунок 5.8) перемещают переключающие пружины 5 от одних малоподвижных пружин 6 к другим. После снятия управляющего сигнала с обмоток, якорь блокируется магнитным полем постоянных магнитов. В первоначальное положение якорь и переключающие пружины возвращаются подачей сигнала управления на вторую пару обмоток, магнитный поток от которых будет суммироваться с поляризующимся потоком в зазорах и , а в зазорах и - вычитаться из него.

МАГНИТОУПРАВЛЯЕМЫЕ ГЕРМЕТЕЗИРОВАННЫЕ КОНТАКТЫ (ГЕРКОНЫ) И ГЕРКОНОВЫЕ РЕЛЕ

Магнитоуправляемым контактом (МК) называется контакт электрической цепи, изменяющий состояние электрической цепи посредством механического замыкания или размыкания её при воздействии управляющего магнитного поля на его элементы, совмещающие функции контактов и участков электрических и магнитных цепей. Магнитоуправляемый контакт, помещенный в герметезированный баллон, называется герметезированным магнитоуправляемым контактом или герконом. Появление МК позволило решить несколько задач:

• устранить воздействие на область контакта как окружающей среды, так и многих продуктов, образующихся в процессе работы коммутационных электромеханических аппаратов, что расширило возможности по коммутации электрических цепей с очень малыми токами и напряжениями

• повысить механическую износостойкость (до 109 циклов и выше);

• максимально унифицировать элементную базу и упростить коммутационные аппараты, повысить их быстродействие.

Так как детали МК реализуют функции контактов и участков электрических и магнитных цепей, их называют контактными сердечниками (КС). Контактные сердечники могут быть неподвижными и подвижными. Часто подвижные КС выполняются гибкими и играют роль возвратной пружины. Магнитоуправляемые контакты с гибкими подвижными КС называют безъякорными, т. к. в них отсутствует жесткий подвижный элемент магнитной системы – якорь, характерный для негерконовых электромагнитных реле. К безъякорным относятся язычковые и мембранные МК. Первые получили наибольшее распространение.

Существуют МК сухие (с твердыми контактами) и смоченные жидким металлом.

Сухие язычковые магнитоуправляемые контакты. Язычковыми называются МК, содержащие КС в виде консольно закрепленных пластин или стержней, изгибающихся под воздействием магнитного поля. Наиболее распространенные виды: симметричный и несимметричный замыкающие МК; переключающий МК вида РП-3, размыкаемый (р) и переключающий (П) контактные сердечники закреплены с одной стороны герметизированного баллона, а замыкаемый (З) – с другой; переключающий МК вида РЗ-3 (размыкаемый и замыкаемый КС расположены с одной стороны баллона, а переключающий – с противоположной).

Симметричный язычковый замыкающий МК (рисунок 5.9, а) – простейшая конструкция, состоящая из одинаковых подвижных КС, заваренных в стеклянную трубку диаметром от 2 до 5,5 мм, которая после изготовления МК образует герметизированный баллон. Длина баллонов составляет от 7,5 до 50 мм. Общая длина (с выводами) язычковых МК – от 20 до 80 мм. При изготовлении баллон заполняется сухим газом (например, азотом, водородом или их смесью) при различных давлениях или вакуумируется. Для того чтобы КС выполняли свои функции, материал, из которого их изготавливают, должен обладать определенными свойствами:

• большой магнитной индукцией в полях с напряженностью 200-700 А/м;

• низкой коэрцитивной силой;

• достаточной электропроводностью;

• хорошей упругостью;

• коэффициентом теплового расширения, близким к стеклу (баллону), и др.

Указанные свойства имеет, например, низконикелевый пермаллой. Контактные сердечники язычковых магнитоуправляемых контактов (МК) штампуются из проволоки диаметром 0,5-1,5 мм, изготовленной из материалов.

Внутренние концы КС в языковых МК перекрываются на величину а и имеют контактное покрытие (см. рисунок 5.9, б), толщиной от единиц до десятков микрон. Для изготовления КС используют материалы: рутений, родий, сплавы на основе золота, вольфрама, молибдена, а также и более сложные многослойные покрытия.

Рисунок 5.9 – Основные виды сухих язычковых магнитоуправляемых контактов:

А ‑ симметричный замыкающий МК; б, в ‑ разомкнутое и замкнутое положение КС замыкающего МК; г ‑ ассиметричный замыкающий МК; д ‑ переключающий МК вида РП – 3; е ‑ переключающий МК вида РЗ – П; 1,2 ‑ замыкание КС; 3 ‑ баллон; 4 ‑ переключающий КС; 5 ‑ размыкаемый КС; 6 ‑ немагнитная контакт-деталь; 7 ‑ шина; 8 ‑ обмотка; 9 ‑ постоянный магнит.

Кроме рассмотренных симметричных МК в практике нашли применение ассиметричные языковые замыкающие МК (см. рисунок 5.9, г). Такие МК сложнее, но зато габариты намного меньше.

В электрических аппаратах на базе замыкающих МК могут быть реализованы и размыкающие контакты, если использовать поляризующее магнитное поле (например, от постоянного магнита), а управляющее поле направлять в МК встречно поляризующему.

Выполняются КС сухих языковых МК не только из магнитомягких материалов (пермаллоев), но и из среднекоэрцитивных материалов с высокой остаточной магнитной индукцией. В этом случае, после замыкания МК его КС при снятии воздействия управляющего поля остаются в замкнутом состоянии за счёт их остаточной магнитной энергии. Такие МК с магнитной памятью называются гезаконами (герметизированными замыкающими контактами).

Смоченные (жидкометаллические МК-ЖМК) – это МК, внутри герметизированного баллона которых, токопроводящие детали частично или полностью смочены жидким металлом. Наиболее распространен смачивающий материал – ртуть. Наряду с баллонным ЖМК имеют место и безрезервуарные ЖМК, жидкий металл в которых находится только в капиллярах переключающего КС. Герконовые реле могут содержать один или несколько МК, одну или несколько обмоток (или шин), поляризующие постоянные магниты (ПМ), дополнительные ферромагнитные детали, играющие роль магнитопровода, кожуха магнитного и т. д. На основе МК создают и многоцепные реле, реле напряжения (например РЭС-45), реле тока (например РТГ-01010) и много других многоцелевых реле.